FFMPEG
processing

a beginners guide

FFMPEG processing
A beginners guide

sameer borate
This book is for sale at http://leanpub.com/ffmpeg

This version was published on 2014-06-09

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools
and many iterations to get reader feedback, pivot until you have the right book and build
traction once you do.

©2014 sameer borate

http://leanpub.com/ffmpeg
http://leanpub.com
http://leanpub.com/manifesto

Also By sameer borate

Web Scraping for PHP developers

http://leanpub.com/u/sameerborate
http://leanpub.com/web-scraping

Contents

1. Getting started with FFmpeg 1
1.1 What is FFmpeg? o 2

1.2 Components of FFmpeg L 2
13 ComPression e e 3
14 Bitrates 4

1.5 Audio Sampling Frequency 5
loFramerate L 6
1.7Containers e 7
1.8 Installing FFMPEG e 7

1.9 FFmpeg Command syntax e 8

2. Audio Processing 10
2.1 Transcoding audio files L Lo 11
2.1.1 Introduction to Transcoding 11

2.1.2 Audio compression 11

2.1.3 Getting your audio fileready 12

2.1.4 Transcoding your audio file to a different format 13

2.1.5 Changing the bitrate of theaudio 14

2.1.6 Audio grabbing 16

2.2 Some Popular Audio Formats o ... 16
2.3 Audio Processing Recipes o oo 17
3.Video Processing 18
3.1 Transcoding video files o o 19
3.1.1 Video transcoding introductiono oL, 19

3.1.2 Setting the resolution or frame size ofavideo 20

3.2 Extracting images fromavideo Lo L oL 21
3.3 Misc. video processing tasks Lo 22
3.3.1Extractavideosegment o L. 22

3.3.2 Splittingavideo 23

3.3.3 Combining or stitching videos L. 23

3.3.4 Recording ascreencast L L 24

3.4 Video processing recipeso 24
3.5 Some popular video formats L o 25

4. Filters 26

4.1 Applying video filters L L 27

CONTENTS

4.1.1Cropping videos 27

4.1.2 Expressionsand constants 28
413Padding videos 30

4.1.4 Flipping videos 31
415DrawBox L 31

4.1.6 Overlay - Watermarking your videos 32

4.1.7 Sharpening and Blurring videos L. oL 33

418 Transpose o o 33

4.2 Chaining filters L 35

5. Integrating FFmpeg with PHP o L. 37
5.1 Calling executable programs from PHP 38
5.2 Common problems encountered 39

6. FFmpeg Options e 40
Al Genericoptions o 41
A2Mainoptions 42

A3 Audiooptions 43

1. Getting started with FFmpeg

1. Getting started with FFmpeg 2

1.1 What is FFmpeg?

FFmpeg is a command-line tool for *nix and Windows systems that, in its simplest form, provide
a facility to decode and an encode media files. With the proliferation of video on the Internet
and in our daily lives, users need the ability to transcode (convert) audio and video files from
one format to another. For example, a user might have downloaded a video from YouTube and
need to convent it to a format playable on an iPod or other media device.

Besides this obvious use, FFmpeg is also capable of a few other fundamental manipulations on
the audio and video data. These manipulations include changing the sample rate of the audio and
advancing or delaying it with respect to the video, reducing the size of the media file. They also
include changing the frame rate of the resulting video, cropping it, resizing it, placing bars left
and right and/or top and bottom in order to pad it when necessary, or changing the aspect ratio
of the picture. Furthermore, ffmpeg allows importing audio and video from different sources
such as a microphone.

The main components of FFmpeg are libavcodec, an audio/video codec library, libavformat, an
audio/video container mux/demux library, and the ffmpeg command line program for passing
various transcoding options to the main program.

The FFmpeg project was started by Fabrice Bellard, and has been maintained by Michael
Niedermayer since 2004. The name of the project comes from the MPEG video standards group,
together with “FF” for “fast forward”. On March 13, 2011 a group of FFmpeg developers decided
to fork the project under the name Libav (http://libav.org/) due to some project management
related issues.

FFmpeg is used by many open source and proprietary projects, including ffmpeg2theora, VLC,
MPlayer, HandBrake, Blender, Google Chrome, and various others.

1.2 Components of FFmpeg

FFmpeg is made of the following main components.
Programs

ffmpeg - a command line tool to convert multimedia files between formats. ffserver - a
multimedia streaming server for live broadcasts. ffplay - a simple media player based on SDL
and the FFmpeg libraries. ffprobe - a simple multimedia stream analyzer.

Libraries

libavutil - a library containing functions for simplifying programming, including random
number generators, data structures, mathematics routines, core multimedia utilities, and much
more.

libavcodec - a library containing decoders and encoders for audio/video codecs.
libavformat - a library containing demuxers and muxers for multimedia container formats.

libavdevice - a library containing input and output devices for grabbing from and render-
ing to many common multimedia input/output software frameworks, including Video4Linux,
Video4Linux2, VfW, and ALSA.

1. Getting started with FFmpeg 3

libavfilter - a library containing media filters.

libswscale - a library performing highly optimized image scaling and color space/pixel format
conversion operations.

In this book we will primarily focus on the ffmpeg program, the other programs like ffserver
are used for video broadcasts and is outside the scope of this book. Among the libraries, the
most notable parts of FFmpeg are libavcodec, an audio/video codec library, and libavformat, an
audio/video container mux and demux library.

1.3 Compression

To be honest, trying to shoehorn the complete details of audio and video in a paragraph or two
is plainly ridiculous, as the topic is rather complex. But since this is a beginnera€™s guide, a few
basic overviews will be enough to get you started using ffmpeg properly.

If you are working with audio and video, you are well aware that these files take an inordinate
space for storage. You cannot easily work with these files if they were not compressed
beforehand. Assuming an NTSC standard video format; a raw (uncompressed) video at 720x480
pixels, 30 frames per second and 24-bit RGB color, would take about 1,036,800 bytes (1 Mb) per
frame. That’s almost 30MB per second, or over 200GB for a 2-hour movie. And that’s just the
video. Audio stream also takes additional storage. Something needs to be done so that the movie
can be stored on a consumer-grade medium such as a DVD. The data needs to be compressed
beforehand.

Conventional, lossless compression algorithms such as ZIP, which everyone uses on a regular
basis, don’t reduce the size of the data enough, so we need to look into lossy compression for
further size reduction. Lossy compression works by discarding some data in the media which
results in smaller file sizes. So now you might be thinking what data the compression algorithm
discards. Well in general the algorithm does not discard any random data, which would be a
disaster. The compression algorithm discards data only if it thinks that the data is redundant.
For example in movie frames many times not much changes between successive frames; if the
compression software discards some of these frames the viewer will hardly notice any difference,
but the storage requirement of those frames have been saved.

Lossy compression is commonly used to compress multimedia data such as audio, video and still
images. The only negative aspect of lossy compression is that as some data is removed during
compression which can reduce the fidelity of the output.

The algorithms that allow us to encode and decode the data, whether by using lossy or lossless
technique are called codecs. Several codecs are enclosed in the libavcodec library supplied with
ffmpeg, which enables you to work with a wide variety of video and audio formats.

Once the audio and video streams have been encoded by their respective codecs, this encoded
data needs to be put together into a single file. This file is called the 4€ containera€™. A graphic
of the process is shown below.

1. Getting started with FFmpeg 4

Audio Stream

Y

Audio Codec [y

Container

Video Codec .

AV
MP3
MOV

Video Stream

Y

1.4 Bitrates

A movie is made-up of two main components, Audio and Video. Both “components” produce a
separate stream of data that must be decoded by your DVD-player or some program so we can
see and hear the video properly.

The bitrate of a movie is the key to the quality of the audio and video of that movie. Also,
particular formats specify the bitrate or the maximum bitrate to be used. Bitrate is a measurement
of the number of bits that are transmitted over a set length of time. Your overall bitrate is
a combination of your video stream and audio stream in your file with the majority coming
from your video stream. Bitrate denotes the average number of bits that one second of audio
or video data will take up in your compressed bit stream. The overall bitrate of your movie is a
combination of your video stream and audio stream in your file with the majority coming from
your video stream.

A Dbit rate is usually measured in some multiple of bits per second - for example, kilobits, or
thousands of bits per second (Kbps - for example, kilobits, or thousands of bits per second (Kbps).

Bitrates come in two versions - VBR (Variable Bit Rate encoding) or CBR (Constant Bit Rate
encoding). VBR allows a higher bitrate (and therefore more storage space) to be allocated to the
more complex segments of media files while less space is allocated to less complex segments. The
average of these rates can be calculated to produce an average bitrate for the file. VBR allows
you to set a maximum and minimum bitrate. The compression algorithm then tries to efficiently
compress the data reducing to the minimum bitrate when there is little or no motion on screen
and increasing to the maximum defined rate when the motion is prevalent. This helps to give
you a smaller overall file size without compromising the quality of the video.

CBR is used when a predictable flat bit rate is needed. Although the flat bitrate throughout
the entire file comes at the price of efficiency for the codec; usually resulting in a larger file,
but smoother playback. CBR is useful for streaming multimedia content on limited capacity
channels since it is the maximum bit rate that matters, not the average, so CBR would be used to
take advantage of all of the capacity. CBR would not be the optimal choice for storage as it would
not allocate enough data for complex sections (resulting in degraded quality) while wasting data
on simple sections.

Depending on your video you might want to use a VBR for a streaming playback if the sudden
spikes do not exceed your target user’s connection speed. For example if there is only one high
motion scene in a video, you will be wasting considerable bandwidth on a CBR throughout the

1. Getting started with FFmpeg 5

entire file and may better serve your user’s need by using a VBR. Either way try experimenting
with the two settings to find what works best for your video. Briefly, a bitrate specifies how
many kilobits the file may use per second of audio. The following shows the quality for various
standard audio bitrates.

64 Kbps Audio encoded at 64 Kbps have a 15:1 compression ratio.
This bitrate is not recommended for digital music but is
acceptable for voice-only recordings.

96 Kbps Audio encoded at 96 Kbps have a 15:1 compression ratio.
One minute of music will be about 700KB of disk space.

128 Kbps Audio encoded at 128 Kbps have an 11:1 compression
ratio. One minute of music is takes around 1MB of disk
space.

160 Kbps Audio encoded at 160 Kbps have a 9:1 compression ratio.

One minute of music will is about 1.5MB of disk space.
192 Kbps and above = MP3s encoded at this setting take up the most space but

have CD quality sound and can take up to 2MB of space
per 60 seconds of music. Online music stores or music
download services will have at least this high of a bitrate.

1.5 Audio Sampling Frequency

The audio sampling frequency is the number of times per second audio is sampled and stored
- CD audio is sampled at 44.1 KHz, which means when the sound is converted from analog to
digital, 44100 samples per second are taken of the audio signal. The higher the sampling rate the
audio has, the wider the frequency range it provides. In other words, higher is better quality.

Your lows will be lower; your highs will be higher. For example the following image shows an
analog signal on the left converted to a digital representation using two different sampling rates.
As you can see the higher sampling will lead to an even more exact reproduction of the original

signal.
/\/ .|I||||I.,||”“|_ ‘1',

Analog signal Sampling at 11000Hz Sampling at 32000Hz

The sample rate can be thought of as how often or how much the sound is described. CD quality
audio has 44,100 of these measurements a second. That’s why it’s called 44.1 kilohertz (khz).

So what is the relationship between bitrate and sampling frequency? Bitrate simply specifies the
number of bits per second that are used to encode the audio stream. The uncompressed bitrate
for CD audio is 16 bits x 44100 samples x 2 channels = 1411200bps, or approximately 1411kbps.
When audio is stored in an uncompressed format, the bitrate is a linear function of the sample
rate; i.e. doubling the sample rate doubles the bitrate.

With uncompressed audio, there is a direct relationship between the sample rate and the bitrate.
A 44.1kHz 16-bit stereo signal takes 1411.2 kbps, or approximately 10.4Mb per minute to record.

1. Getting started with FFmpeg 6

A 44.1kHz 16-bit mono file would take half of this, as would a 44.1kHz 8-bit stereo file or a
22.05kHz 16-bit stereo file.

But now formats like Ogg Vorbis and MP3, compress audio by making calculated guesses about
the sounds humans aren’t likely to hear and then discard these sound samples. As part of this
process, such formats allow us to make some of the decisions by deciding how much to throw
away, or to put it more simply, how much data to use to represent the original sound. So, using
our 44.1kHz stereo sample, we can choose to use as little as 48kbps or as much as approx 500kbps
to store this sound. At 500kbps, more of the original sound fidelity is preserved than at 48kbps.

Calculating values

An audio file’s bit rate can be easily calculated when given sufficient information. Bit rate =
(sampling rate) x (bit depth) x (number of channels)

e.g., a recording with a 44.1 kHz sampling rate, a 16 bit depth, and 2 channels: 44100 x 16 x 2 =
1411200 bits per second, or 1411.2 kbit/s

The file size of an audio recording can also be calculated using a similar formula:
File Size (Bytes) = (sampling rate) x (bit depth) x (total channels) x (seconds) / 8

e.g. a 70 minutes long CD quality recording will take up 740MB: 44100 x 16 x 2 X 4200 / 8 =
740880000 Bytes

Some standard sampling frequencies with their applications is given below.

Sampling Rate Use

8,000 Hz Telephone, walkie-talkie, wireless intercom and wireless
microphone transmission; adequate for human speech.

11,025 Hz used for lower-quality PCM, MPEG

22,050 Hz One half the sampling rate of audio CDs; used for
lower-quality PCM and MPEG

32,000 Hz miniDV digital video camcorder, video tapes with extra
channels of, DAT, High-quality digital wireless microphones,
digitizing FM radio.

44,100 Hz Audio CD, also most commonly used with MPEG-1 audio

(VCD, SVCD, MP3). Most professional audio equipment uses
44.1 kHz sampling and above.

48,000 Hz The standard audio sampling rate used by professional digital
video equipment such as tape recorders, video servers, vision
mixers and so on. Also used for sound with consumer video

formats like DV, digital TV, DVD, and films.
96,000 Hz DVD-Audio, some LPCM DVD tracks, Blu-ray Disc audio

tracks, HD DVD High-Definition DVD) audio tracks.

1.6 Frame rate

The frame rate is how many unique consecutive images are displayed per second in the video to
give the illusion of movement; each image thus is called a ‘frame’. The human brain perceives
a smooth continuous motion if shown around 24 frames per second. If the frames are less than

1. Getting started with FFmpeg 7

this magic number, you will see a jerky motion rather than a smooth one. Most video creators
use this frame rate.

This is not a standard of course, if your video is a screen cast you can get to frame rates as
low as 5fps. Television standards such as PAL (common in Europe and some parts of Asia) uses
25fps, while NTSC standard (used in the US and Japan) uses 29.97fps. Generally you should never
exceed the frame rate of the source video. Obviously, the best results will be achieved if the frame
rate is kept the same as your original source.

1.7 Containers

A container file is used to identify and combine different data types. Simpler container formats
can contain different types of audio formats, while more advanced container formats can support
multiple audio and video streams, subtitles and meta-data — along with the synchronization
information needed to play back the various streams together. In most cases, the file header
and most of the metadata are specified by the container format. For example, container formats
exist for optimized, low-quality, internet video streaming which differs from high-quality DVD
streaming requirements.

The video file formats we’re familiar with, such as Quicktime movies (.mov), .avi are media
container formats. Some container formats just contain audio, like WAV file fro Windows, MP3
music files or AIFF files for Macs. Others contain audio and video, such as ASF files for Windows,
which contain audio compressed with the WAV codec and video compressed with the WMV
codec. There are dozens of these container formats. If you're uploading a video to an online site,
check to see what formats the site supports. Sometimes this can be confusing because the list of
accepted formats may have both compression formats like MPEG-4 and container formats like
.mov listed.

1.8 Installing FFMPEG

FFmpeg is developed under GNU/Linux, but it can be compiled under most operating systems,
including Mac OS X, Microsoft Windows, AmigaOS. In most of the Linux distros, you can
directly install ffmpeg using their respective package managers. But in case you are looking
for installing the latest version or want to customize the installation, you might need direct
installation from the source code too, but as it is an involved and tricky procedure, I'm not
discussing it here.

Installing FFmpeg in Ubuntu

Run the following command in the terminal to install FFmpeg.
$ sudo apt-get install ffmpeg

Installing FFmpeg in Fedora

FFmpeg can be directly installed from the repos using the following command.

© 00 = O O b W N =

NN
= o

1. Getting started with FFmpeg 8
$ su -c¢ 'yum install ffmpeg'

Installing FFmpeg on CentOS

FFmpeg can be directly installed from the repos using the following command.
$ yum install ffmpeg ffmpeg-devel

Installing FFmpeg on Windows

By far the easiest way to start using FFmpeg is to get a precompiled binary. Zeranoe.com has pre-
built binaries for windows, which makes it easier to install ffmpeg. So if you are using Windows
you can get up and running FFmpeg in no time. Go ahead and grab the binaries from the below

link.
http://ftmpeg.zeranoe.com/builds/

Once installed use the following command to get the ffmpeg version and the versions of the
codecs installed.

C:\ffmpeg>ffmpeg -version

On my Windows machine it returns the following; of course this may be different on your system,
depending on the version of FFmpeg installed:

ffmpeg version N-61143-g64e4bdT
built on Mar 7 2014 00:01:08 with gcc 4.8.2 (GCC)

libavutil 52. 66.101 / 52. 66.101
libavcodec 55. 52.102 / 55. 52.102
libavformat 55. 33.101 / 55. 33.101
libavdevice 55. 11.100 / 55. 11.100
libavfilter 4. 3.100 / 4. 3.100
libswscale 2. 5.101 / 2. 5.101
libswresample ©. 18.100 / 0. 18.100
libpostproc 52. 3.100 / 52. 3.100

1.9 FFmpeg Command syntax

Adhering to the UNIX culture, FFmpeg relies on a plethora of command-line options to do its
work. The generic syntax of an FFmpeg command is shown below.

o ffmpeg [[infile options][*-i’ infile]]...{[outfile options] outfile}...

Each section of the command is explained below.

1. Getting started with FFmpeg 9

ffmpeg - The first is the FFmpeg executable file name.

infile option - This is where you put options for your input video or audio file. This tells FFmpeg
to apply any options give here to the input file before processing starts. This section is not as
widely used as the ‘outfile options’.

-i infile - This is the actual video or audio file you use for processing, and also the directory of
where it is located. e.g /home/george/media/myvideo.flv. You will always need to include the -i
option before your file name.

outfile options - This is where you will put the various options that are required which you want
to be applied to the video or audio you will be creating.

outfile — The name of the output file you want to create, and also the directory path if it not the
same as your input file directory. e.g is /home/george/media/out.flv

Now that we have FFmpeg installed, we can move to chapter 2 which discusses audio processing.

2. Audio Processing

2. Audio Processing 11

2.1 Transcoding audio files

2.1.1 Introduction to Transcoding

One of the basic tasks you can perform on an audio track in FFmpeg is to convert it into another
format. This process known as Transcoding, is the direct digital-to-digital conversion of one
stream encoding to another, whether video or audio. Transcoding is usually done in cases where a
target device — media player such as iPod, iPAD, DVD players or a software application, does not
support the format or has limited storage capacity that requires a condensed file size. Transcoding
can also be used to convert an incompatible or obsolete format to a better-supported format.

Transcoding is generally a “lossy process” - a data encoding method which compresses data
by discarding (losing) some of it to minimize the amount of data that need to be stored in a
file; however, transcoding can also be “lossless” if the input is losslessly compressed and the
output is either losslessly compressed or stored in a uncompressed state. Although compression
can reduce file size consideberaly, repeatedly performing transcoding on a single file using lossy
compression can create a ‘generation loss’ — a reduction in the quality of the audio when copying,
which would cause further reduction in quality on making a copy of the copy. So you need to
keep this in mind while repeatedly transcoding between various formats.

Although I could not show you here the difference between an original and lossy audio
compression (due to the limitation of the media of course), the following shows an example
of a lossy compression in an image. The original JPG image is on the left and a lossy image of the
same after repeated compression is shown on the right. As we lose precious information forever
during compression, we cannot get back the original image using the compressed image.

2.1.2 Audio compression

Audio compression is a form of data compression designed to reduce the transmission band-
width and storage requirement of a digital audio stream. Audio compression algorithms are
implemented in software as audio codec’s, - which is a software program or library capable of
encoding/decoding a digital audio stream.

Audio compression is either lossy or lossless as discussed earlier. Lossless audio compression
produces a version of digital audio that can be decoded to an exact digital duplicate of the
original audio stream. This is in contrast to the irreversible changes upon playback from lossy
compression techniques such as Vorbis and MP3.

The whole idea behind audio compression in FFmpeg is to lower the audio bitrate (96kbps,
128kbps, 192 kbps etc.), this effectively also reduces the fidelity or quality of the audio. So you
want to keep in mind that, a high bitrate audio file confirms a better sound quality, so by lowering
its bitrate you are actually degrading the quality.

© 00 N O O b W N =

I ==Y
B W N SO

2. Audio Processing 12

For normal computer use, the 128kbs rate produces a quality equal to that of an audio CD. But
in the case of an MP3 use, it is necessary to use a 256kbs bitrate to reach an identical result to
that of the CD quality sound.

2.1.3 Getting your audio file ready

Now that we have gone through a short introduction to compression, we will now work on the
process of transcoding audio files.

To run the example commands in this section, you will need an audio file in a .wav or an .mp3
format. You can get hold of a wav file by ripping an audio track from a music CD or downloading
an mp3 file from the Internet. Call the resulting file ‘myaudio.mp3’. For this section I used the
‘Solo Piano 7’ Opening file from http://www.archive.org/details/solo-piano-7.

Next, we will get ffmpeg to identify the file. This will tell us the various details of the audio file.
The simple way to get this information is to just tell ffmpeg to use it for input. For this we need
to use the —i option. Enter the following command at your prompt.

ffmpeg -i myaudio.mp3

The exact output on my PC is shown below; which may differ from yours depending on the
version of ffmpeg you are using.

D:\ffmpeg>ffmpeg -i myaudio.mp3

ffmpeg version N-31100-g9251942, Copyright (c) 2000-2011 the FFmpeg developers
Input #9, mp3, from 'myaudio.mp3':

Metadata:
album : solo piano 7
artist . Torley
album_artist . Torley
composer . Torley
genre : Piano
track : 001/176
title : 001 - Openings
date : 2008

Duration: 00:01:39.50, start: 0.000000, bitrate: 193 kb/s
Stream #0.0: Audio: mp3, 44100 Hz, stereo, s16, 192 kb/s
At least one output file must be specified

There is a lot of information we can gather from the output - the track is 1 minute 39.50 seconds
long, the bitrate is 193kb/s, the audio is encoded in mp3 format at 44100Hz (44.1KHz) and has
two channels (stereo). All this information will come in handy during a transcoding process.

2. Audio Processing 13

2.1.4 Transcoding your audio file to a different format

Let us now convert the downloaded file to a simple wav format. Notice that we have not specified
any format option or flag, just the complete output filename. FFmpeg automatically guesses
which encoders to use by noticing the format of the input and output files, this can be a big
help if you keep forgetting the option name or are just being lazy. If you are not going to specify
the encoder format, make sure you mention the full filename, along with the appropriate format
extension.

1 ffmpeg -i myaudio.mp3 myaudio.wav

The output of the command is shown below.

1 ffmpeg version N-31100-g9251942, Copyright (c) 2000-2011 the FFmpeg developers
2 Input #9, mp3, from 'myaudio.mp3':

3 Metadata:

4 album . solo piano 7

5 artist . Torley

6 album_artist . Torley

7 composer . Torley

8 genre : Piano

9 track : 001/176

10 title : 001 - Openings

11 date . 2008

12 Duration: 00:01:39.50, start: 0.000000, bitrate: 193 kb/s
13 Stream #0.0: Audio: mp3, 44100 Hz, stereo, s16, 192 kb/s

14 File 'myaudio.wav' already exists. Overwrite ? [y/N] y
15 OQOutput #0, wav, to 'myaudio.wav':
16 Metadata:

17 album : solo piano 7

18 artist . Torley

19 album_artist . Torley

20 composer . Torley

21 genre : Piano

22 track : 001/176

23 title : 001 - Openings

24 date : 2008

25 encoder : Lavfs3.4.0

26 Stream #0.0: Audio: pcm_s16le, 44100 Hz, stereo, s16, 1411 kb/s

27 Stream mapping:

28 Stream #0.0 -> #0.0

29 Press [q] to stop, [?] for help

30 size= 17141kB time=00:01:39.50 bitrate=1411.2kbits/s

31 video:0kB audio:17141kB global headers:0kB muxing overhead ©.0002517%

2. Audio Processing 14

Notice how large the resulting wav file is (17 Mb) as compared to the original mp3 format (2.1
Mb). This being for the reason that the wav file is not compressed like its mp3 counterpart.
Incidentally, the audio format of the wav is Pulse-code modulation (PCM), technically PCM
signed 16 bit little-endian format.

As you can see from the screenshot above the output of an ffmpeg command is quite large,
so from here on I'll just specify the command and do away with the output screen unless it is
required for explanation.

2.1.5 Changing the bitrate of the audio

As we learned in Chapter 1, bitrates control the file size and the quality of an audio or video
stream. Lowering the bitrate will result not only in a reduced file size but also diminish the
quality of the final output. This can be required if you have a high quality audio recording and
need to lower the quality for a reduced file size to stream over the Web. For example the following
command will set the bitrate of the mp3 file to 64kb/s. This uses the —ab option to the job.

*-ab
ffmpeg -i myaudio.mp3 -ab 64k out.mp3

The higher the value the better is the audio quality. This is one of the important factors
responsible for the audio quality. But that doesn’t mean you can make a poor audio file sound
better by increasing its bitrate. The resultant file will just be of bigger size.

Another example - to transcode an mp3 file to an AAC format, with a bitrate of 128K, we can
use the following.

ffmpeg -i myaudio.mp3 -ab 128k myaudio.aac

As we saw earlier the original audio track has 2 channels (stereo). Many times it is not necessary
to have 2 channels, like in a speech recording, where its really doesn’t matter.. In such cases you
can further reduce the file size by setting the audio channels to mono or ‘1’. For output streams
it is set by default to the number of input audio channels.

*

-ac
ffmpeg -i myaudio.mp3 -ac 1 out.mp3

Note that once you convert a stereo channel to a mono, you cannot convert it back to a stereo
channel audio. That information is lost forever. The same thing happens with bitrates. Once
you reduce a bitrate of an audio file, you cannot just increase the bitrate back again to get the
original quality. That information is already gone. So as a precaution, never work with your
original media files. Make a copy of the original and work with the copy.

The other important audio option is —acodec. This option lets you choose the type of audio codec
you want to use. e.g. if you are using ffmpeg on a mp3 file, then it will need the audio codec

2. Audio Processing 15

libmp3lame. You can specify it using -acodec libmp3lame. Although, by default, ffmpeg takes
care of the codecs you need (by guessing it from the output file format) but if you need anything
different, then go for this option. FFmpeg uses a default encoder for each audio stream, using
the output file extension to guess the encoder to use. This option lets you force FFmpeg to use a
specific audio encoder rather than the default. The following for example will extract the audio
stream from a .flv video and save it as an .mp3 file using the libmp3lame encoder.

-acodec <encoder/decoder>
ffmpeg -i myvideo.flv -acodec libmp3lame myaudio.mp3

Sometime you FFmpeg may be unable to correctly decode the input file, giving the error
something like the following.

Error while decoding stream #0.0

In such cases you can force FFmpeg to use a particular decoder to decode the input file. The
following example will force FFmpeg to use the mp3 codec toe decode the input file audio.

ffmpeg -acodec libmp3lame -i myvideo.flv myaudio.mp3

Note that the —acodec option comes before the —i option when we want the codec to apply to
the input stream and comes after the —i option when we want the codec to apply to the output
stream. To see what codecs are available on your system, issue the following command.

ffmpeg -codecs

Sometimes you may want to completely disable the audio recording for which we can use the
—an option. This can be used to strip out an audio stream from a video file. When you use this
option, all the other audio related attributes are cancelled out, which is fine, as they would not
matter without the audio. So for example you are want to disable the audio from a video file and
only copy the video stream, you can use the following.

ffmpeg -i myvideo.flv -an out.flv

Another important option is —ar, the audio sampling frequency. This lets you set the maximum
sampling frequency of the audio stream. Audio sampling was discussed in Chapter 1. You can
use the option to reduce the sampling frequency to a lower value to reduce file storage or Internet
bandwidth capacity. The default value is set at 44100Hz. The value is given in Hz. So the following
will resample the input audio to 11025Hz with a single channel (mono).

-ar <value in Hz>
ffmpeg -i myaudio.mp3 -ar 11025 -ac 1 myaudio.mp3

Note that once you have reduced the sampling frequency some of the audio data is lost. You
cannot again resample it to a higher value and expect increase in the audio quality.

2. Audio Processing 16

2.1.6 Audio grabbing

Until now we have looked into how to transform existing audio stream into other formats.
FFmpeg can also grab audio from external devices such as a microphone. This can be useful if
you need to record from your desktop microphone or create a screencast. Note that the following
command will not work on a Windows machine. You need to have a Linux machine to correctly
grab the mic audio. Enter the following command at your Linux prompt.

ffmpeg -f oss -i /dev/dsp ./audio.wav

This will start recording the input audio from the mic to the ‘audio.wav’ file. Once started you
will need to press ‘q’ to stop the recording. We will now look into the various options given
above.

The option -f denotes the format to be used for the input stream. There are various formats
FFmpeg supports; you can find the complete list by issuing the following command.

ffmpeg -formats

Here we are using the ‘oss’ format, which stands for Open Sound System input device. The
Open Sound System (OSS) is an interface for making and capturing sound in Unix or Unix-like
operating systems. In the Linux kernel, there have historically been two uniform sound APIs.
One is OSS; the other is ALSA (Advanced Linux Sound Architecture). ALSA is available for
Linux only.

The device ‘/dev/dsp’ is the default audio input device in the Linux system. It’s connected to the
main speakers and the primary recording source such as a microphone. The system administrator
can set /dev/dsp to be a symbolic link to the desired default device.

The ‘audio.wav’ file is where the recorded audio will be saved.

Another example - the following will record the mic audio to the file ‘rec.flac’ in the current
directory, this is a flac format file.

ffmpeg -f alsa -ar 48000 -i front ./rec.flac

2.2 Some Popular Audio Formats

.AAC Advanced Audio Coding File - declared the new audio-file standard in 1997, designed to
replace its predecessor, MP3. It provides better quality at lower bit rates, and its Apple’s standard
iTunes and iPod audio format.

.AIF(F) Audio Interchange File Format - developed by Electronic Arts and Apple back in the
’80s. AIFF files contain uncompressed audio, resulting in large file sizes.

.m4a Apple Lossless - This file format uses lossless compressions for digital music.

2. Audio Processing 17

.MP3 MPEG Layer 3 - the most popular digital-audio music format, designed by a team of
European engineers in 1991 to conserve the quality of a song while storing it in a small, compact
file.

.OGG Ogg Vorbis - one of the most popular license-free, open-source audio-compression
formats. It’s efficient for streaming and compression because it creates smaller files than MP3
while maintaining audio quality.

.RA(M) Real Audio Media - developed by RealNetworks in 1995. It has a wide variety of uses,
from videos to music, but is mainly used for streaming audio such as that from Internet radio
stations.

WAV Windows WAVE - IBM and Microsoft-developed format popular audio format among PC
computer users; it can hold both compressed and uncompressed audio.

.WMA Windows Media Audio - designed by Microsoft to be an MP3 competitor, but with the
introduction of iTunes and iPods, it’s fallen far behind MP3 in popularity.

2.3 Audio Processing Recipes

MP3 to AAC High Quality Stereo

ffmpeg -i in.mp3 -acodec aac -ac 2 -ar 48000 -ab 192k out.aac
MP3 to AAC High Quality 5.1

ffmpeg -i in.mp3 -acodec aac -ac 6 -ar 48000 -ab 448k out.aac
Convert to low quality mp3 to preserve storage

ffmpeg -i in.mp3 -ab 64K out.mp3

MP3 to Vorbis OGG (can be played in HTML 5)

ffmpeg -i in.mp3 -acodec vorbis -ag 50 out.ogg

3. Video Processing

O b W N =

3. Video Processing 19

3.1 Transcoding video files

3.1.1 Video transcoding introduction

Among users, video conversion between various formats is doubtless the widest and most
popular use of FFmpeg. Before starting we need to have a sample video handy. Let’s start by
grabbing a Flash Video .flv file from YouTube and name it 4€ myvideo.flva€™. If you have an
FLV video on your PC, well and good. You can use http://keepvid.com/ do download a video
from YouTube. Now that you a video ready let us see what ffmpeg can tell us about it.

ffmpeg -i myvideo.flv

The output of the command is shown below (Box 1.). This shows that the audio stream is a mono
track sampled at 22050 Hz and MP3-encoded. The audio bitrate is 64kbs. The video stream was
encoded using the “flv” (Flash Video) codec, “yuv420p” is how the color is encoded, the picture
resolution is 320x240 pixels and the frame rate is 25 frames per second.

Getting to know the details before you start any processing any video is essential to getting
correct and optimal results.

some output removed)
Duration: 00:01:40.07, start: ©0.000000, bitrate: 307 kb/s
Stream #0.0: Video: flv, yuv420p, 320x240, 243 kb/s, 25 tbr, 1k tbn, 1k tbc
Stream #0.1: Audio: mp3, 22050 Hz, mono, s16, 64 kb/s
At least one output file must be specified

Let’s start by transcoding the FLV we downloaded to an AVI format. If you do not specify any
options FFmpeg automatically selects the proper output encoder by reading the extension of the
output file.

ffmpeg -i myvideo.flv output.avi

Sometimes you might want to force FFmpeg to use a particular type of codec in case it fails
to correctly use a particular codec to convert to a required output format. You can easily do it
using the -vcodec flag. In the below example we are asking FFmpeg to use the ‘mpeg4’ codec to
transcode the source video.

-vcodec codec
ffmpeg -i myvideo.flv -—vcodec mpeg4 output.mp4

The above showed a barebones video transcoding, but it rarely ends with this. Users have various
other requirements while converting between formats. User may need to reduce the quality of the
audio stream to reduce the video size, increase the resolution of the output video or remove some
sections of the video. For this FFmpeg gives you various options to work with. The following
sections show some of the essential options FFmpeg provides.

O b W N -

W N -

3. Video Processing 20

3.1.2 Setting the resolution or frame size of a video

The resolution of our original video is 320x240 pixels. What if we want to increase the resolution
to 640x480 i.e. double the size of the video. You may also need to change the resolution if you are
converting to format which has a different aspect ratio than the source video. We can use the —s
option for this exact purpose.

ffmpeg -i myvideo.flv -s 640x480 out.flv
Instead of specifying the size in numbers you can use an abbreviation.
ffmpeg -i myvideo.flv -s vga out.flv

The complete list of resolutions and their respective abbreviations is given in the following table.

sqcif - 128x96 qeif - 176x144 cif - 352x288

4cif - 704x576 16cif - 1408x1152 qqvga - 160x120
qvga - 320x240 vga - 640x480 svga - 800x600

xga - 1024x768 uxga - 1600x1200 qxga - 2048x1536
sxga - 1280x1024 gsxga - 2560x2048 hsxga - 5120x4096
wvga - 852x480 wxga - 1366x768 wsxga - 1600x1024
wuxga - 1920x1200 woxga - 2560x1600 wqsxga - 3200x20438
wquxga - 3840x2400 whsxga - 6400x4096 whuxga - 7680x4800
cga - 320x200 ega - 640x350 hd480 - 852x480
hd720 - 1280x720 hd1080 - 1920x1080

Let us convert a high resolution MOV video to a low resolution FLV. My original video has the
following specification.

Format = H.264

Resolution = 847x478
Video Bitrate = T700kb/s
Audio Bitrate = 1255 kb/s
Audio = 44 KHz, stereo

This takes about 90Mb of storage. To convert it to a lower resolution FLV I used the following
settings.

Format = FLV

Resolution = 480x268
Video Bitrate = 300kb/s
Audio = 22 KHz, stereo

We have halved the audio sampling rate and also halved the video size. We will also reduce the
video bitrate. The following is the final command. After completion the final file was at a size
of 35Mb, half of the original. Of course we lost a lot of quality in the process, but that was our
original goal.

3. Video Processing 21
ffmpeg -i high-res.mov -ar 22050 -b 300k -s 480x268 -vcodec flv out.flv

If you would like to do away with all the options but still instruct FFmpeg to use the same
quality for the output video, as the input video, you can use the —sameq option which uses the
same quality factors in the encoder as in the decoder which allows almost lossless encoding.

ffmpeg -i myvideo.flv -sameq out.mpeg

3.2 Extracting images from a video

Let us say you have a ton of videos and need to identify each one by an image taken from the
video itself. For that you need to extract a frame from the respective video and save it as an
image or rather call it a thumbnail. FFmpeg lets you easily accomplice this task. You can extract
a single image at a specific position in the video or multiple images from multiple positions.

The most basic command to get the task done is shown below.
ffmpeg -i myvideo.flv -r 1 —-vframes 1 image-%d. jpeg

The command will capture a single frame from the start of the video and save it as a jpeg file.
The various options used are listed below.

T Used to set the frame rate of video. i.e. no. of frames to be
extracted into images per second. The default value is 25, but
that will return a large number of images, and with little
difference between subsequent images in a single second. So

we will set this to 1.
-virames The number of video frames to record.

image-%d.jpeg The output images file names. Image-%02d.jpeg means that the
images will be saved in the following format.
image-01.jpeg
image-02.jpeg
image-12.jpeg
etc.
You can change the format as per your liking and use case.

You may be asking why use the —r and the —vframes option; even if we remove the —r option,
we will still get 1 frame. True, but if you set the —~vframes option to maybe 12 and remove the -r
option, then you will capture 12 images from the “same 1 second” position rather then 1 image
from each new second. So if we give a new command like the following, we will capture 12
images; 6 from each second.

ffmpeg -i myvideo.flv -r 6 -vframes 12 image-%d. jpeg

You do not have to start capturing images from the start of the video, rather you have the option to
capture from a particular location in the video. For example to capture a single frame at location

3. Video Processing 22
00:01:30 - i.e. at Iminute 30 seconds in the video, we can use the following command.
ffmpeg -i myvideo.flv -ss 00:01:30 -r 1 —vframes 1 image-7%d. jpeg

The —ss option details are given below.

-ss You can either specify the duration as a whole number of seconds (eg: “-ss
90” if you want 1% minutes of video) or you can use hh:mm:ss.sss notation
(eg: “-ss 00:01:30” for 1 minutes and 30 seconds of video).

So, to extract 12 images starting from the 00:01:30 location, 1 image for each second of video, we
can use the following.

ffmpeg -i myvideo.flv -ss 00:01:30 -r 1 —-vframes 12 image-%d. jpeg

You can also specify the position time in seconds rather than the HH:MM:SS format. So the
following will extract 12 images starting from 90 seconds in the video.

ffmpeg -i myvideo.flv -ss 90 -r 1 —vframes 12 image-%d. jpeg
If you need to resize the output images to a particular size you can use the -s option.
ffmpeg -i myvideo.flv -ss 90 -r 1 —-vframes 1 -s 100x100 image-7%d. jpeg

3.2.1 Creating a video from images

In the last section we saw how you could extract images from a video for thumbnail creation
purposes. You can also work the other way and create a video from a sequence of images. The
following for example will take a bunch of jpeg images named as image-01.jpeg, image-02.jpeg
etc and convert it to an flv video. The —f option instructs FFmpeg to use a particular container,
here ‘image2’.

ffmpeg -f image2 -i image-%2d.jpeg out.flv

You can further ask FFmpeg to use a particular video size for the output video using the —s option.

ffmpeg -f image2 -i image-%2d.jpeg —-s 480x240 out.flv

3.3 Misc. video processing tasks

Below are some other miscellaneous video tasks you can accomplish using FFmpeg.

3.3.1 Extract a video segment

Extracting a small segment of a video can be accomplished using the following command. This
will extract the starting 30 seconds of the video.

3. Video Processing 23

ffmpeg -i myvideo.flv -t 00:00:30 out.flv

If you would like to extract a video segment from a certain position in time rather than from the
start, you will have to use the —ss flag along with the -t flag. The following for example will
extract a 30 second video starting from the position 00:01:30; i.e. 1 minute 30 seconds from the
start.

ffmpeg -i myvideo.flv -ss 00:01:30 -t 00:00:30 out.flv
The same can be accomplished as below, using the absolute ‘seconds’ format.
ffmpeg -i myvideo.flv -ss 90 -t 30 out.flv

3.3.2 Splitting a video

In some cases you will want to split a huge video into two or multiple parts. Lets us say for
example that you want to split a 1 minute 40 second video into a 1 minute video and another of
40 seconds. We can do that in two steps. First you will extract the starting 1 minute of the video
and save it in ‘out1.flv’.

ffmpeg -i myvideo.flv -vcodec copy -acodec copy -ss 00:00:00 -t 60 outl.flv

We will then extract the remaining 40 seconds of the video starting from the 1 minute position
and save it to ‘out2.fIv’.

ffmpeg -i myvideo.flv -vcodec copy -acodec copy -ss 00:01:00 -t 40 out2.flv

We are using the special ‘copy’ value of the —vcodec and —acodec options. We could have also
only specified the following command but I wanted to highlight the use of the ‘copy’ value.

ffmpeg -i myvideo.flv -ss 00:01:00 -t 40 out2.flv

As we are extracting the complete second part of the video, we could eliminate the —t option
altogether, which will instruct FFmpeg to extract all of the remaining video after 1 minute.

ffmpeg -i myvideo.flv -vcodec copy -acodec copy -ss 00:01:00 out2.flv

3.3.3 Combining or stitching videos

Although you cannot merge video files using only FFmpeg, a few multimedia containers like
MPEG-1, MPEG-2 PS allows you to join video files by merely concatenating them. For example
if you have two video files videol.mpg and video2.mpg, you can use Linux cat command as
below.

3. Video Processing 24
cat videol.mpg video2.mpg > merged.mpg

On Windows you can use the following.

copy /b videol.mpg video2.mpg > merged.mpg

Note that this methods does not work with all containers, so be sure that you check the final
output video. You could instead use MEncoder to do the stitching, but that is an altogether
different program, which will not be covered here. Still a command is shown below that will
help you merge two videos.

mencoder -ovc lavc videol.mpg video2.mpg -o merged.mpg

3.3.4 Recording a screencast

You can also use FFmpeg to take screencasts of your desktop screen. Screencasts enable you to
record your dynamic video screen to a video file. Most people use such screencasts to make video
tutorials. The following is a simple command to record a screencast.

ffmpeg -f x11grab -r 25 -s xvga -sameq -i :0.0 out.mpg

The ‘x11grab’ is the input source from where we are going to get the video data. Note that this is
only available in Linux and not on Windows. We will set the frame rate to 25 with the —r option.
The -s options specifies the size of the output video, try to match this with your screen resolution.
-1 :0.0’ is the display screen number of your X11 server and we will use —sameq option to keep
the video quality equal to the source.

3.4 Video processing recipes

Get info about a video file.

ffmpeg -i myvideo. flv

Extract sound from a video, and save it as Mp3.

ffmpeg -i myvideo.avi -vn -ar 44100 -ac 2 -ab 192 -f mp3 out.mp3

Encode video for the PSP

3. Video Processing 25

ffmpeg -i myvideo.avi -b 300 -s 320x240 -vcodec xvid -ab 32 -ar 24000 -acodec \
aac out.mp4

Convert .flv to animated gif(uncompressed). Watch the gif file size.
ffmpeg -i myaudio.flv out.gif

Convert .avi to mpeg for dvd players

ffmpeg -i myvideo.flv -target pal-dvd -aspect 16:9 out.mpeg
Compress .mov to VCD mpeg?2

ffmpeg -i myvideo.mov -target pal-vcd out.mpg

Convert flv video for iPhone

ffmpeg -i myvideo.flv -vcodec mpeg4 -b 700k -acodec aac -ab 96 -f mp4 -s 320x2\
40 -r 25 out.mp4

3.5 Some popular video formats

.FLV Flash Video Format - developed by Macromedia, and is widely used to deliver video over
the Internet (it’s the format used by YouTube) and requires the Adobe Flash Player for viewing.

H.264 MPEG-4 - is a digital video codec standard based on MPEG-4 used to get high data
compression while maintaining good image quality.

.MOV QuickTime - a multimedia container file that contain audio and video tracks. The video
and audio may be encoded using one of several different QuickTime-supported codecs.

.MP4, M4V MPEG Layer 4 - a popular video format defined by the Moving Picture Experts
Group. It became a standard in 2000 and was included in QuickTime in 2000.

.MPV MPEG Layer 1 - developed in 1993 by the Moving Picture Experts Group. It’s often used
with Video CDs (VCDs).

WMV Windows Media Video - a format developed by Microsoft. Other Windows Media Video
formats include .ASF, .AVI, or .MKV.

4. Filters

4. Filters 27

4.1 Applying video filters

Applying filters to videos is one of the most common tasks users accomplish using FFmpeg. There
are a number of video filters you can choose from to perform a variety of effects. I've limited the
filters discussed here to the common ones a beginner can use.

Filters are specified by the —vf option and is specified as follows, where “filter” is the name of
the particular filter you are going to use.

-vf
ffmpeg -i myvideo.flv -vf "filter" out.flv

Not every FFmpeg installation has all the filters present. If you want to find which filters your
version of FFmpeg supports use the following command.

ffmpeg -filters

Let us start out filter section with one of the common filters you will be going to use - crop.

4.1.1 Cropping videos

Sometimes we need to make a video appear widescreen for aesthetic purposes. Resizing the video
directly makes it appear to be squashed; instead we need to crop the video to make it appear
anamorphic. You may also sometimes require removing some area from the video; e.g. removing
the top area containing a logo from a video. We can accomplice this tasks using the ‘crop’ filter.
The crop filter lets you cut a rectangular portion of a video frame; the filter takes four parameters
in the following format:

width:height:x:y
Option Description
width output width of the crop area
height output height of the crop area
X the x position of the crop rectangle
y the y position of the crop rectangle

‘height
H crop area
Pl ¥ —

video frame

Lets us take the ‘myvideo.flv’ from the previous chapter and crop it to 320x180 pixels. Note that

4. Filters 28

the —crop option has been deprecated in the newer versions of FFmpeg; you now require to use
the ‘crop’ filter instead.

1 ffmpeg -i myvideo.flv -vf crop=320:200 myvideo-cropped.flv

As we have not provided the x:y position for the crop rectangle, this will crop the central 320x200
pixel area from the video, which is the default setting. You can instead set the x:y position at
which the crop will happen. For example, to crop the video at 320x200 pixels starting from the
left corner of the frame as shown in Fig 4.2, you can use the following command.

1 ffmpeg -i myvideo.flv -vf crop=320:200:0:0 myvideo-cropped.flv

v

‘height

crop area | 1

PUE———
video frame

4.1.2 Expressions and constants

Besides taking numbers, the ‘crop’ filter can also take parameters containing arithmetical
expressions and the following constants:

Table 4.1
Constant Description
E, PL, PHI the corresponding mathematical approximated values for e (euler number),
pi (greek PI), PHI (golden ratio)
X,y the computed values for x and y. They are evaluated for each new frame
in_w,in_h the input width and height
iw , ih same as in_w and in_h
out_w,out_h the output (cropped) width and height
ow , oh same as out_w and out_h
n the number of input frame, starting from 0
pos the position in the file of the input frame, NAN if unknown
t timestamp expressed in seconds, NAN if the input timestamp is unknown

For example the following will crop the video with the size equal to that of the input frame, in
other words it will keep the output size the same as the input, no surprises there.

1 ffmpeg -i myvideo.flv -vf crop=in_w:in_h out.flv

The following command will only keep the bottom right quarter of the input video.

1

4. Filters 29
ffmpeg -i myvideo.flv -vf crop=in_w/2:in_h/2:in_w/2:in_h/2 out.flv

Arithmetical expressions and functions that are allowed in FFmpeg are given below.

Table 4.2

Expression Description

+5 507 Binary operators allowed
+, - Unary operators allowed
sinh(x) Functions
cosh(x)

tanh(x)

sin(x)

cos(x)

tan(x)

atan(x)

asin(x)

acos(x)

exp(x)

log(x)

abs(x)

gauss(x)

mod(x, y)

max(x, y)

min(x, y)

eq(x, y)

gte(x, y)

gt(x, y)

lte(x, y)

1t(x, y)

So to crop the output keeping the height with accordance to PHI (the Golden Ratio) we can use
the following.

ffmpeg -i myvideo.flv -vf crop=in_w:1/PHI * in_w out.flv

Here is a complex crop command. The following creates an oscillatory moving video using the
‘sin” and ‘cos’ functions and various arithmetical expressions.

ffmpeg -i myvideo.flv -vf "crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)\
*sin(n/10):(in_h-out_h)/2 +((in_h-out_h)/2)*cos(n/6)" out.flv

Taking another example, suppose you have a video with an aspect ratio of 4:3 with size of 320x240
and you need to turn it into a widescreen MPEG movie that can be used on a DVD player. The
trouble is that as its aspect ratio is 4:3, which is narrower than the 16:9 format of a DVD. If we
want to give it a widescreen aspect ratio, its height should be 320/(16/9)=180 pixels instead of 240.

4. Filters 30

If we simply resize the image in order to squeeze it vertically, the picture will appear deformed.
The only thing we can do is to trim off parts of it, or to “crop” it. We need to crop 30 pixels from
the top and bottom (60 pixels total) and then convert the result to a 16:9 NTSC DVD.

ffmpeg -i myvideo.flv -vf "crop=in_w:in_h-(2*30)" -target ntsc-dvd -aspect 16\
:9 out.mpg

4.1.3 Padding videos

You might need padding when you want to burn a video into a DVD widescreen format say 16:9
or any other video format. While watching videos you may have noticed many times the 2 black
bars at top and bottom on a DVD video, these are the padding bars.

Let us consider the typical scenario — we need to convert a video into widescreen 16:9 format,
the international standard format of HDTV, Full HD and non-HD digital television. Suppose the
video format we have is 1280x720 and now we want to pad it with bars on top and bottom of
the frame to get the final aspect ratio as 4:3 i.e. a resolution of 1280x960. Incidentally 4:3 format
is used in the standard television since television’s origins and many computer monitors employ
the same aspect ratio. In order to achieve this we will have to increase the height of the video by
240 pixels. We can accomplice this by using the ‘pad filter. The pad filter takes five parameters
in the following format:

width : height : x : y:color

Table 4.3

Option Description

width, height The size of the output image with the padding’s added. If the value for width or
height is 0, the corresponding input size is used for the output. The default value

of width and height is 0.
X,y The offsets where to place the input frame in the padded area with respect to
the top/left border of the output frame. The default value of x and y is 0.
color The color of the padded area, it can be the name of a color (case insensitive

match) or a 0xXRRGGBB sequence like in HTML & CSS. The default value of
color is “black”.

The following for example increases the height of the input video by 240 pixels, adding a padding
of 120 pixels at the top and 120 pixels at the bottom. The videos y position is set at 120 pixels and
x position at 0. The padding color is set to ‘green’ to make us clearly see where we have added
the padding. Fig. 4.3 shows it visually.

ffmpeg -i myvideo.flv -vf pad=0:in_h+240:0:120:green out.flv

4. Filters 31

Original video

16:9 format

-

J modified video
padding

added 4:3 format

\—

The following example will pad the input to get an output with dimensions increased bt 3/2, and
put the input video at the center of the padded area.

ffmpeg -1 myvideo.flv —-vf pad="3/2*iw:3/2%¥ih:(ow-iw)/2:(oh-ih)/2" out.flv

4.1.4 Flipping videos

You can flip a video horizontally or vertically. Frankly I've no idea why someone will want to
flip a video horizontally unless of course the video at some stage during processing came out
wrong. To flip a video horizontally you run the following command.

ffmpeg -i myvideo.flv -vf "hflip" out.flv
Likewise to flip a video vertically you can use the following.
ffmpeg -i myvideo.flv -vf "vflip" out.flv

4.1.5 Draw Box

The ‘drawbox’ will enable you to draw a color box around a frame. The filter accepts the
following parameters.

drawbox=x:y:width:height:color

Table 4.4

Option Description

width, height Specify the width and height of the box, if set to 0 they are interpreted as the

input width and height. Default is 0.
X,y Specify the top left corner coordinates of the box. Default is 0.

color Specify the color of the box, it can be the name of a color (case insensitive
match) or a 0xXRRGGBB[AA] sequence.

4. Filters 32
So to draw a blue box around the video with the default size settings, use the following.

ffmpeg -i myvideo.flv -vf drawbox=0:0:0:0:blue out.flv

4.1.6 Overlay - Watermarking your videos

One of the most common tasks during video processing is that of adding a watermark to your
videos. Typically a watermark is used to protect ownership of the video or to provide video credit
by adding a logo. One of the most common areas where watermarks appear is the bottom right
hand or the top right hand corner of a video.

To accomplish this purpose we need to use the ‘overlay’ filter. This filter is used to overlay one
video or image on top of another. It accepts the following parameters and constants.

Table 4.5
Option Description
X,y x and y is the position of overlaid video or image on the main video.
You can also use the following constants.
main_w, main_h main input width and height
W, H same as main_w and main_h
overlay_w, overlay_h overlay input width and height
w, h same as overlay_w and overlay_h

So for example to position a watermark 10 pixel to the right and 10 pixels down from the top left
corner of the main video, we would use the following.

ffmpeg —-i myvideo.flv -vf "movie=logo.png [watermark]; [in][watermark] overlay\
=10:10 [out]" out.flv

To position the same at the bottom left hand corner we use the following.

ffmpeg —-i myvideo.flv -vf "movie=logo.png [watermark]; [in][watermark] overlay\
=10:H-h-10 [out]" out.flv

To position at the top right hand corner you use the following.

ffmpeg —-i myvideo.flv -vf "movie=logo.png [watermark]; [in][watermark] overlay\
=W-w-10:10 [out]" out.flv

Now you make be thinking about the new strings in the above commands — [watermark], [in]
and [out]. These are the source and sinks. The ‘[in]’ is a source stream from where ffmpeg takes
the source data. Similarly the ‘[out]’ sink is where ffmpeg send the processed stream. Sink and
Source are used specially when chaining filters as above.

4. Filters 33

In the above watermark example, the ‘movie’ filter takes the ‘logo.png’ file and sends it to the
‘[watermark]’ sink. You can name the label whatever you want, but keep it descriptive. The next
filter in the chain, ‘overlay’, takes the input from the ‘[watermark]’ source, processes it and send
it to the ‘[out]’ sink, which is finally save to a file.

4.1.7 Sharpening and Blurring videos
Another filter that is commonly used that to Sharpen or Blur a video. The filter takes the
following parameters.

unsharpen=luma_msize_x:luma_msize_y:luma_amount:chroma_msize_x:chroma_msize_y:chroma_-
amount

Table 4.6
Option Description
luma_msize_x the luma matrix horizontal size. It can be an integer between 3 and 13,
default value is 5.
luma_msize_y the luma matrix vertical size. It can be an integer between 3 and 13, default
value is 5.
luma_amount the luma effect strength. It can be a float number between -2.0 and 5.0,

default value is 1.0.
chroma_msize_x the chroma matrix horizontal size. It can be an integer between 3 and 13,

default value is 0.
chroma_msize_y the chroma matrix vertical size. It can be an integer between 3 and 13,

default value is 0.
chroma_amount the chroma effect strength. It can be a float number between -2.0 and 5.0,

default value is 0.0.

You don’t have to worry what each parameter means, just remember that negative values for the
amount will blur the input video, while positive values will sharpen. All parameters are optional
and default to the equivalent of the string ‘5:5:1.0:0:0:0.0’.

For example the following will blur the input video considerably.
ffmpeg -i myvideo.flv -vf "unsharp=3:3:-2:3:3:-2" out.flv
Note that the ‘unsharpen’ filter can take some time to process a video compared to other filters.

4.1.8 Transpose

You can transpose input video easily with this filter. It takes the following parameters.

Table 4.7

Option Description

‘0’ Rotate by 90 degrees counterclockwise and vertically flip (default).
Rotate by 90 degrees clockwise.

Rotate by 90 degrees counterclockwise.

Rotate by 90 degrees clockwise and vertically flip.

1

4. Filters
For example the following will rotate the video 90 degrees clockwise.

ffmpeg -i myvideo.flv -vf "transpose=1" out.flv

34

4. Filters 35

4.2 Chaining filters

Until now we have applied individual filters to the videos. But the real power of filters can
be realized when we chain multiple filters together, which is called a “filterchain’. A filterchain
consists of a sequence of filters, each one connected to the previous one in the sequence separated
by a comma. The format is shown below.

ffmpeg —vf “filter1, filter2, filter3”

For example let us chain together the ‘crop’ and the ‘drawbox’ filters. An example is given below.
ffmpeg -i myvideo.flv -vf crop=300:200:10:10,drawbox=0:0:0:0:blue out.flv

In the example the filters are applied in their respective order. First the ‘crop’ filter is applied
to the frame, after which the ‘drawbox’ filter is applied. You can see the effect in the following
picture.

If you change the sequence of the filter as below, you will get a different output. Here, first the
‘drawbox’ filter will be applied followed by the ‘crop’ filter.

ffmpeg -i myvideo.flv -vf drawbox=0:0:0:0:blue,crop=300:200:10:10 out. flv

Notice that some of the border in the video frame below has been cropped.

4. Filters 36

The filters we have applied until now to our videos did not give us the option to select any
particular section of the video. What if you want to apply a filter to only a particular segment of
the video? This is where filter chains can rescue you.

Let us say we want to apply a water mark to a video for only the start 10 seconds of the video.
We can accomplish this with the help of the ‘select’ filter.

5. Integrating FFmpeg with PHP

© 00 = O O & W N =

-
o

© 0 I O O & W N =

e
(]

5. Integrating FFmpeg with PHP 38

5.1 Calling executable programs from PHP

If you are a web developer and need to process videos uploaded by the user on the website,
FFmpeg is an indispensible tool. And since it is broadly available on most platforms, integration
with languages like PHP is relatively easy. One of the common methods to integrate FFmpeg
with PHP is to use the ‘exec()’ function.

So to use the example command given in chapter 2, you can use the following code. Note that
until the FFmpeg command is running, PHP statements after the exec() will not be executed. i.e.
the ‘echo’ below will only executes after ffmpeg completes its processing.

Example 1

<?php

$audio_source = "myaudio.mp3";

$audio_dest = "myaudio.wav";

$command = "ffmpeg -i $audio_source $audio_dest";
exec($command);

echo "done";

?2>

The above code assumes that FFmpeg executable is stored in the current directory or is set in
your path variable. If it is not stored in your path or in your current directory than you have to
explicitly mention the full path to your FFmpeg. For example in Windows, if the path to FFmpeg
is ‘c:\ffmpeg\bin’, then the above code should be adjusted as below. Note the forward slashes as
the path separator.

Example 2

<?php
$ffmpeg = "c:/ffmpeg/bin/ffmpeg.exe";

$audio_source = "myaudio.mp3";
$audio_dest = "myaudio.wav";

$command = "$ffmpeg -i $audio_source $audio_dest";

exec($command);

?2>

Many times you may also need to look at the output of the executable to find if any errors
occurred during processing or for debugging purposes.

The following changes to the script will let you capture the output of the ‘exec()’ function. Note
the redirection operators (2>&1) suffixed to the $command string. The output messages of the

O© 0O I O O & W N =

N N N O S ==Y
O© 00 < O O b W N ~ O

5. Integrating FFmpeg with PHP

FFmpeg processing are stored in the $output variable, and the $ret variable stores a Boolean

value, indicating success or failure of the execution.

Example 3

39

<?php

$ffmpeg = "c:/ffmpeg/bin/ffmpeg.exe;

$audio_source = "myaudio.mp3";
$audio_dest = "myaudio.wav";
$command = "$ffmpeg -i $audio_source $audio_dest 2>8&1";

$ret = exec($command, $output, $ret);

if(!$ret) {
echo "command executed successfully";
} else {

echo "error";

/* If you need to see the messages returned by FFmpeg */

print_r($output);

?>

5.2 Common problems encountered

As in all software programs errors can occur during execution. Below are some of the few
common problems encountered when executing FFmpeg via PHP.

The most common problem user’s encounter is that the PHP script cannot read an input file
or create the output file. This commonly occurs in Linux systems due to file permissions. If the
video or audio file you are reading is owned by someone and the PHP script is owned by another
person, Linux will deny the script from accessing the input file. Also while writing the output
file, make sure that you have write access and permission to the directory where the output file
will be written.

6. FFmpeg Options

6. FFmpeg Options

A.1 Generic options

These options are shared among all the ft* tools.

41

Option Description
-L Show license.
-h, -?, -help, ~help Show help.
-version Show version.
-formats Show available formats. The fields preceding the format names have the
following meanings:
D - Decoding available
E - Encoding available
-codecs Show available codecs. The fields preceding the codec names have the
following meanings:
D - Decoding available
E - Encoding available
V/A/S - Video/audio/subtitle codec
S - Codec supports slices
D - Codec supports direct rendering
T - Codec can handle input truncated at random locations instead of only at
frame boundaries
-bsfs Show available bitstream filters.
-protocols Show available protocols.
-filters Show available libavfilter filters.
-pix_fmts Show available pixel formats.
-loglevel LEVEL Set the logging level used by the library. LEVEL is a number or a string

containing one of the following values:

quiet

panic

fatal

error

warning

info

verbose

debug

By default the program logs to stderr, if coloring is supported by the terminal,
colors are used to mark errors and warnings. Log coloring can be disabled
setting the environment variable @env{FFMPEG_FORCE_NOCOLOR} or
@env{NO_COLOR}, or can be forced setting the environment variable
@env{FFMPEG_FORCE_COLOR]}. The use of the environment variable
@env{NO_COLOR} is deprecated and will be dropped in a following FFmpeg

version.

6. FFmpeg Options

42

A.2 Main options

Option Description

-f fmt Force format.

-1 filename input file name

-y Overwrite output files.

-t duration Restrict the transcoded/captured video sequence to the duration specified

-fs limit_size
-8s position

-itsoffset offset

-timestamp time

-metadata key=value

-v number
-target type

-dframes number
-scodec codec
-newsubtitle
-slang code

in seconds. hh:mm:ss[.xxx] syntax is also supported.
Set the file size limit.

Seek to given time position in seconds. hh:mm:ss[.xxx] syntax is also

supported.
Set the input time offset in seconds. [-]hh:mm:ss[.xxx] syntax is also

supported. This option affects all the input files that follow it. The offset is
added to the timestamps of the input files. Specifying a positive offset
means that the corresponding streams are delayed by offset seconds.

Set the recording timestamp in the container. The syntax for time is:
now|([(YYYY-MM-DD|YYYYMMDD)[T|t|
JJ(HHEMM[:SS[.m....]]])(HH[MM[SS[.m...]]]))[Z|z])

If the value is “now” it takes the current time. Time is local time unless Z

or z is appended, in which case it is interpreted as UTC. If the

year-month-day part is not specified it takes the current year-month-day.
Set a metadata key/value pair. For example, for setting the title in the

output file:
ffmpeg -i in.avi -metadata title="my title” out.flv

Set the logging verbosity level.

Specify target file type (“ved”, “sved”, “dvd”, “dv”, “dv50”, “pal-ved”,
“ntsc-sved”, ...). All the format options (bitrate, codecs, buffer sizes) are
then set automatically. You can just type:

ffmpeg -i myfile.avi -target ved /tmp/ved.mpg

Nevertheless you can specify additional options as long as you know they

do not conflict with the standard, as in:
ffmpeg -i myfile.avi -target ved -bf 2 /tmp/ved.mpg

Set the number of data frames to record.

Force subtitle codec (copy to copy stream).

Add a new subtitle stream to the current output stream.

Set the ISO 639 language code (3 letters) of the current subtitle stream.

6. FFmpeg Options

A.3 Audio options

Option

Description

43

-aframes number
-ar freq
-ab bitrate

-aq q
-ac channels

-an
-acodec codec

-newaudio

-alang code

Set the number of audio frames to record.

Set the audio sampling frequency (default = 44100 Hz).

Set the audio bitrate in bit/s (default = 64k).

Set the audio quality (codec-specific, VBR).

Set the number of audio channels. For input streams it is set by default to 1,
for output streams it is set by default to the same number of audio channels in
input. If the input file has audio streams with different channel count, the

behaviour is undefined.
Disable audio recording.

Force audio codec to codec. Use the copy special value to specify that the raw

codec data must be copied as is.
Add a new audio track to the output file. If you want to specify parameters, do

so before -newaudio (-acodec, -ab, etc..). Mapping will be done automatically,
if the number of output streams is equal to the number of input streams, else it
will pick the first one that matches. You can override the mapping using -map

as usual. Example:
ffmpeg -i file. mpg -vcodec copy -acodec ac3 -ab 384k test.mpg -acodec mp2

-ab 192k -newaudio
Set the ISO 639 language code (3 letters) of the current audio stream.

	Table of Contents
	1. Getting started with FFmpeg
	1.1 What is FFmpeg?
	1.2 Components of FFmpeg
	1.3 Compression
	1.4 Bitrates
	1.5 Audio Sampling Frequency
	1.6 Frame rate
	1.7 Containers
	1.8 Installing FFMPEG
	1.9 FFmpeg Command syntax

	2. Audio Processing
	2.1 Transcoding audio files
	2.1.1 Introduction to Transcoding
	2.1.2 Audio compression
	2.1.3 Getting your audio file ready
	2.1.4 Transcoding your audio file to a different format
	2.1.5 Changing the bitrate of the audio
	2.1.6 Audio grabbing

	2.2 Some Popular Audio Formats
	2.3 Audio Processing Recipes

	3. Video Processing
	3.1 Transcoding video files
	3.1.1 Video transcoding introduction
	3.1.2 Setting the resolution or frame size of a video

	3.2 Extracting images from a video
	3.3 Misc. video processing tasks
	3.3.1 Extract a video segment
	3.3.2 Splitting a video
	3.3.3 Combining or stitching videos
	3.3.4 Recording a screencast

	3.4 Video processing recipes
	3.5 Some popular video formats

	4. Filters
	4.1 Applying video filters
	4.1.1 Cropping videos
	4.1.2 Expressions and constants
	4.1.3 Padding videos
	4.1.4 Flipping videos
	4.1.5 Draw Box
	4.1.6 Overlay - Watermarking your videos
	4.1.7 Sharpening and Blurring videos
	4.1.8 Transpose

	4.2 Chaining filters

	5. Integrating FFmpeg with PHP
	5.1 Calling executable programs from PHP
	5.2 Common problems encountered

	6. FFmpeg Options
	A.1 Generic options
	A.2 Main options
	A.3 Audio options

